
Continuity and Differentiability 

1. Are the following two functions  
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 If not, give reasons.   

What value must be assigned to the discontinuity at  x = 5  in order to remove the point of discontinuity at  x = 5 ? 
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  has a solution between  1 and 2 , and another between  2 and 3 . 

3. Prove that the function:  
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   is continuous at  x = k. 

 

4. Let  
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 Show that  f(x) assumes every value between  0  and  1  once and only once as x increases from  0  to  1  . 
  

 Find the discontinuities of  f(x) . 

 

5. In the following, sketch the graph of  f(x).  For what value of a is f continuous? differentiable ? 

 (a)    (b) 
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6. Test the continuity of  f(x)  at  x = 0  where 
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7. Let  f  be a continuous function from  [a, b]  to  [a, b] .  

Show that there is always a  x0  in  [a,b]  with  f(x0) = x0. 

 

8. The function  f  is defined by  
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 Sketch the graphs of  f(x)  and its derivative  f’(x)  for  π<<π− x   and decide whether the functions  

 f  and  f’  are continuous at  x = 0  or not. 
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9. Let  f(x),  g(x)  be two continuous functions defined on  R  and  
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 Show that  
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,  x ≠ 1. Is  φ(x)  continuous on  R ? 

 

10. Show that   ( ) 21xcosy −=   is continuous in its domain, so is  y = sec x + csc x . 

 

11. Discuss the continuity of  f : 

 (a) 
⎪⎩

⎪
⎨
⎧

=

π∈=
0x1

]2,0(x
xsin

x
)x(f    (at x = 0) 

 (b) f(x) = x – [x]     (at x = 0, x = 1/2) 

 (c)     (at x = 0, x = π) 
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12. (a) Sketch the graphs of the real-valued functions  f0, f1 and f2, where 
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(b) With the aid of your sketches, explain why  f0  is not continuous at x = 0, but  f1  and  f2  are   

 continuous at x = 0.   

 (c) A function is said to be differentiable at  x = a  if  
h
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  that  f2  is differentiable at  x = 0.  Write down an expression for 
dx
df2   where  x ≠ 0 .   

 (d) Hence show that although  f2  is differentiable everywhere, its derivative is not continuous at  x = 0. 
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 Prove that: 

 (a) f(x) is continuous at  x = 0 ; 

 (b) f(x) has a derivative at  x = 0 ; 

 (c) f’(x) is continuous at  x = 0. 
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